Temporal and Spatial Variability of Precipitation from Observations and Models*

نویسندگان

  • JAMES H. TRAMMELL
  • XUN JIANG
  • LIMING LI
  • ANGELA KAO
  • GUANG J. ZHANG
  • EDMUND K. M. CHANG
  • YUK YUNG
چکیده

Principal component analysis (PCA) is utilized to explore the temporal and spatial variability of precipitation from GPCP and a CAM5 simulation from 1979 to 2010. In the tropical region, the interannual variability of tropical precipitation is characterized by two dominant modes (El Niño and El Niño Modoki). The first and second modes of tropical GPCP precipitation capture 31.9% and 15.6% of the total variance, respectively. The first mode has positive precipitation anomalies over the western Pacific and negative precipitation anomalies over the central and eastern Pacific. The second mode has positive precipitation anomalies over the central Pacific and negative precipitation anomalies over the western and eastern Pacific. Similar variations are seen in the first two modes of tropical precipitation from a CAM5 simulation, although the magnitudes are slightly weaker than in the observations. Over the Northern Hemisphere (NH) high latitudes, the first mode, capturing 8.3% of the total variance of NH GPCP precipitation, is related to the northern annular mode (NAM). During the positive phase of NAM, there are negative precipitation anomalies over the Arctic and positive precipitation anomalies over the midlatitudes. Over the Southern Hemisphere (SH) high latitudes, the first mode, capturing 13.2% of the total variance of SH GPCP precipitation, is related to the southern annular mode (SAM). During the positive phase of the SAM, there are negative precipitation anomalies over the Antarctic and positive precipitation anomalies over the midlatitudes. The CAM5 precipitation simulation demonstrates similar results to those of the observations. However, they do not capture both the high precipitation anomalies over the northern Pacific Ocean or the position of the positive precipitation anomalies in the SH.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Assessment of Spatial and Temporal Variability of Extreme Precipitation Indices (North and West of Iran)

The frequency of precipitation extreme event can cause flood or change the drought period. Accurate understanding of these changes is necessary to take action to reduce these effects. In this research, temporal and spatial changes of 14 precipitation indices for eight synoptic stations in the North and West of the country were investigated. For this purpose, after reconstructing the daily preci...

متن کامل

Temporal-Spatial Variability of the Severest Dry Spells in the North-West of Iran

The variability of temperature and precipitation is regarded as one of the main characteristics of the climate.Precipitation and its results, especially results such as droughts, vary on different temporal and spatial scales. Thepurpose of this paper is to determine the frequency of the inter-annual variability of the driest month in north-westIran. In order to obtain the best results, we used ...

متن کامل

Spatial and Temporal Displacements in Wet and Dry Periods in the Southeast of the Caspian Sea: Golestan Province in Iran

The global warming phenomenon has had a great impact not only on the temperature patterns of the regions, but also on the spatial-temporal patterns of the occurrence of wet and dry days. As some areas have increased (decreased) the number of dry days, the result of these changes requires new approaches to water management in these areas. Golestan province in northern Iran is one of the province...

متن کامل

Impact of spatial-temporal variations of climatic variables on summer maize yield in North China Plain

Summer maize (Zea mays L.) is one of the dominant crops in the North China Plain (NCP). Its growth is greatly influenced by the spatial-temporal variation of climatic variables, especially solar radiation, temperature and rainfall. The WOFOST (version 7.1) model was applied to evaluate the impact of climatic variability on summer maize yields using historical meteorological data from 1961 to 20...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016